
lhpes.com 1CONFIDENTIAL

USE CASE: HOW LHP BUILT
SOFTWARE TO SEAMLESSLY
GATHER BATTERY
MANAGEMENT SYSTEM DATA
FOR EXTERNAL STORAGE
AND ANALYSIS
CASE STUDY

lhpes.com 1CONFIDENTIAL

ABOUT THE PROJECT
Industy

Company Name

Tools/ Technologies/ Skills

Goals of the Project

Application Area

• Energy Storage and Management

CHALLENGES
XALT Energy is a manufacturer of energy storage solutions.

They design and build lithium-ion cells, modular packs, and

high-voltage, high-capacity multi-module arrays at their

world-class manufacturing facility in Midland, Michigan.

Their focus is on the growing demand for high-tech storage

solutions in marine, commercial transportation, and specialty

applications.

Modern energy storage solutions require precise, highly

technical real-time battery management, in the form of

systems that can capture, process, and utilize data about the

battery system itself, as well as the components to which the

battery is connected. This is accomplished with a series of

interconnected devices working together.

The Battery Management System (BMS) provides the

monitoring, balancing, and safety functionality for the system.

It monitors battery parameters to control each cell in the

battery pack. The main job of the BMS is to maintain the

lithium-ion cells within their safe operating range regardless

of the demands that are being placed on them. This means

that the BMS must possess the ability to accurately predict

operating situations that have the potential for creating

over-voltage or under-voltage conditions, as well as high- or

low-temperature conditions. The BMS must react quickly and

safely to prevent those adverse conditions from occurring.

The capacity of each battery system differs from one cell to

another. This difference increases with the number of charge/

discharge cycles. So, the parameters being monitored by the

BMS are constantly changing.

• XALT Energy

• Python, CAN, C#, Azure, SQL, Reverse Engineering

from an existing code base, transfer/transform/

format data, vector CANalyzer, vector CAPL scripting

• Be able to collect and store data from the BMS to be

used for analysis

• The telematics device is in the field, and it transmits

captured data to the data hub

lhpes.com 2CONFIDENTIAL

The BMS consists of three parts:

• Master Control Unit (MCU): The MCU manages

multiple parallel strings while providing a single and

simple interface to the application controller. The

MCU communicates with up to 24 SCUs (see below)

to get data one section at a time. It then transfers

this data back to the TCU (see below).

• String Control Unit (SCU): Each string communicates

with the MCU via the battery system CAN

(Controller Area Network) bus to transfer its data.

• Telematics Control Unit (TCU): The TCU

communicates with the MCU to receive data by

sending requests and listening for responses.

Before partnering with LHP, XALT had only built

software to gather raw BMS data on a test machine.

They wanted to gather data autonomously onboard the

TCU itself, and then transform it into a usable format.

LHP was engaged to create software that would gather

the BMS data and then transmit it to an external server

where it would be processed and stored. Additionally,

they wanted all their data to be optimized for querying

and analysis.

Customer Requirements

• Create a program to retrieve data from the BMS and

compile this into an JSON-formatted logfile.

• Use the CAN bus and J1939 protocol to

communicate with the MCU to get the required

data.

• Parse the generated logfiles into SQL tables.

• Make the program customizable for different TCUs,

and be able to customize how often the script

should run or what addresses to send the

requests to.

THE SERVICES LHP
DELIVERED
LHP programmed a solution that runs on XALT’s TCU.

Using Python, the LHP team created a script that runs

directly on the TCU to retrieve data from the MCU

and SCUs. The data is collected by sending a request

to the MCU. The MCU responds with the data for a

specific section within an SCU. This requesting process

is repeated to obtain data from all the sections and all

the SCUs.

LHP employed a CAN bus and the J1939 protocol to

communicate with the MCU. The LHP team created

a console application in C# that is stored on an SFTP

virtual machine. It parses the incoming logfiles into the

SQL tables. Configuration variables are read from a

table to allow the user to customize the options to suit

their needs.

ROADBLOCKS AND
SOLUTIONS
• What if the quantity of data in a section is greater

or less than it is supposed to be? LHP added a

checker to the log parser to confirm that the section

contains the correct amount of data. If it does

not, then the section is discarded. Since the data

collected consists of rolling counts, the customer

agreed that discarding the section data for one

logfile was acceptable.

• Learning how to work on a remote setup: LHP

utilized a remote connection to log into a test bench

lhpes.com 3CONFIDENTIAL

setup. We had to test the program this way instead

of working locally. LHP had to communicate with

the customer to get their assistance if something

needed to be done to the physical setup.

• How could we get the code to work with the correct

libraries? If we tried to include external libraries,

they would need to be installed on all of the TCUs in

the field. Due to the limited capabilities of the TCU,

we avoided using external libraries altogether. In

one instance, LHP had to rewrite an entire function

to get it working with the already included library.

• Compressing and decompressing the logfiles: The

retrieval script is written in Python, but the log

parsing script is written in C#. The retrieval script

compresses the file before transferring it, and the

log parser must decompress that file when it arrives.

LHP wrote a BZip2 compression and decompression

method in both languages, and it worked properly.

But when LHP tried to combine the Python

compressing and the C# decompressing, the

program generated errors. To remedy the issue, LHP

had to use a different library which they installed on

the C# side since they have more control over that

environment.

HOW LHP’S SERVICES
BROUGHT VALUE TO THE
CUSTOMER
• The solution LHP developed is easy to deploy to

additional TCUs and can run in the background

without any user intervention. Our scripts launch on

startup; so even if power is lost, they will continue

to run whenever power is restored.

• The log parser is easy to start and runs continuously

in the background processing the files as they arrive.

The data are parsed into separate tables for each

section of the logfile. This allows for easy querying

of the data when making an analysis.

• The configuration tables allow the user to edit

variables without having to edit the code directly

and then redeploy.

• LHP organized meetings with different teams, for

our customer to discuss the system and share how

things worked. This collaboration helped provide

valuable information to both LHP and the customer.

The customer was able to partner together with

LHP to better understand their own system.

FEATURES
• The LHP solution is easily deployable via over-the-

air updates to TCUs in the field, or through local

updates using the USB drive.

• Our program runs locally and still functions even

if the outside connection is lost. Logfiles will still

be collected, but they won’t be uploaded until a

connection can be made.

RESULTS, ROI, AND
FUTURE PLANS
There was no previous baseline for warranty fulfillment

at XALT. The software LHP developed fulfilled a

need that they previously did not have the capability

to address. This resulted in a net-new return on

opportunity for warranty recording.

